Sasaki metric on the tangent bundle of a Weyl manifold

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

The Weyl bundle as a differentiable manifold

Construction of an infinite dimensional differentiable manifold R∞ not modelled on any Banach space is proposed. Definition, metric and differential structures of a Weyl algebra (P ∗ p M [[~]], ◦) and a Weyl algebra bundle (P∗M[[~]], ◦) are presented. Continuity of the ◦-product in the Tichonov topology is proved. Construction of the ∗-product of the Fedosov type in terms of theory of connectio...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Data-based Manifold Reconstruction via Tangent Bundle Manifold Learning

The goal of Manifold Learning (ML) is to find a description of low-dimensional structure of an unknown q-dimensional manifold embedded in high-dimensional ambient Euclidean space R p , q < p, from their finite samples. There are a variety of formulations of the problem. The methods of Manifold Approximation (MA) reconstruct (estimate) the manifold but don’t find a low-dimensional parameterizati...

متن کامل

A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold

It is a classical fact that the cotangent bundle T M of a differentiable manifold M enjoys a canonical symplectic form Ω. If (M, J, g, ω) is a pseudo-Kähler or para-Kähler 2n-dimensional manifold, we prove that the tangent bundle TM also enjoys a natural pseudo-Kähler or para-Kähler structure (J̃, g̃,Ω), where Ω is the pull-back by g of Ω and g̃ is a pseudoRiemannian metric with neutral signature ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications de l'Institut Mathematique

سال: 2018

ISSN: 0350-1302,1820-7405

DOI: 10.2298/pim1817025b